A Mountain Pass for Reacting Molecules
نویسنده
چکیده
In this paper, we consider a neutral molecule that possesses two distinct stable positions for its nuclei, and look for a mountain pass point between the two minima in the non-relativistic Schrödinger framework. We first prove some properties concerning the spectrum and the eigenstates of a molecule that splits into pieces, a behaviour which is observed when the Palais-Smale sequences obtained by the mountain pass method are not compact. This enables us to identify precisely the possible values of the mountain pass energy and the associated ”critical points at infinity” (a concept introduced by Bahri [2]) in this non-compact case. We then restrict our study to a simplified (but still relevant) model: a molecule made of two interacting parts, the geometry of each part being frozen. We show that this lack of compactness is impossible under some natural assumptions about the configurations ”at infinity”, proving the existence of the mountain pass in these cases. More precisely, we suppose either that the molecules at infinity are charged, or that they are neutral but with dipoles at their ground state. AMS Subject Classification: 35B38, 35Q40, 35J10, 49J35, 81V70, 81V55, 81Q05, 49S05.
منابع مشابه
Solution of a mountain pass problem for the isomerization of a molecule with one free atom
In this paper, we continue the mathematical study of adiabatic chemical reactions, started in a previous work (Ann. Henri Poincaré, 5: 477–521, 2004). We consider a molecule with one free atom, the latter having two distinct possible stable positions. We then look for a mountain pass point between these two local minima in the nonrelativistic Schrödinger framework. We prove the existence of a m...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملExistence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic
We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...
متن کاملA Mountain Pass Lemma and its implications regarding the uniqueness of constrained minimizers
We present a version of the classical Mountain Pass Lemma and explain how to combine it with constraint qualifications to prove that nonlinear programming problems have a unique local minimizer.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004